3,994 research outputs found

    Astragalus Injection for Hypertensive Renal Damage: A Systematic Review

    Get PDF
    Objective. To evaluate the effectiveness of astragalus injection (a traditional Chinese patent medicine) for patients with renal damage induced by hypertension according to the available evidence. Methods. We searched MEDLINE, China National Knowledge Infrastructure (CNKI), Chinese VIP Information, China Biology Medicine (CBM), and Chinese Medical Citation Index (CMCI), and the date of search starts from the first of database to August 2011. No language restriction was applied. We included randomized controlled trials testing astragalus injection against placebo or astragalus injection plus antihypertensive drugs against antihypertensive drugs. Study selection, data extraction, quality assessment, and data analyses were conducted according to the Cochrane review standards. Results. 5 randomized trials (involving 429 patients) were included and the methodological quality was evaluated as generally low. The pooled results showed that astragalus injection was more effective in lowering β2-microglobulin (β2-MG), microalbuminuria (mAlb) compared with placebo, and it was also superior to prostaglandin in lowering blood urea nitrogen (BUN), creatinine clearance rate (Ccr). There were no adverse effects reported in the trials from astragalus injection. Conclusions. Astragalus injection showed protective effects in hypertensive renal damage patients, although available studies are not adequate to draw a definite conclusion due to low quality of included trials. More rigorous clinical trials with high quality are warranted to give high level of evidence

    BiRA-Net: Bilinear Attention Net for Diabetic Retinopathy Grading

    Full text link
    Diabetic retinopathy (DR) is a common retinal disease that leads to blindness. For diagnosis purposes, DR image grading aims to provide automatic DR grade classification, which is not addressed in conventional research methods of binary DR image classification. Small objects in the eye images, like lesions and microaneurysms, are essential to DR grading in medical imaging, but they could easily be influenced by other objects. To address these challenges, we propose a new deep learning architecture, called BiRA-Net, which combines the attention model for feature extraction and bilinear model for fine-grained classification. Furthermore, in considering the distance between different grades of different DR categories, we propose a new loss function, called grading loss, which leads to improved training convergence of the proposed approach. Experimental results are provided to demonstrate the superior performance of the proposed approach.Comment: Accepted at ICIP 201

    Stability Analysis of Delayed Genetic Regulatory Networks via a Relaxed Double Integral Inequality

    Get PDF
    Time delay arising in a genetic regulatory network may cause the instability. This paper is concerned with the stability analysis of genetic regulatory networks with interval time-varying delays. Firstly, a relaxed double integral inequality, named as Wirtinger-type double integral inequality (WTDII), is established to estimate the double integral term appearing in the derivative of Lyapunov-Krasovskii functional with a triple integral term. And it is proved theoretically that the proposed WTDII is tighter than the widely used Jensen-based double inequality and the recently developed Wiringter-based double inequality. Then, by applying the WTDII to the stability analysis of a delayed genetic regulatory network, together with the usage of useful information of regulatory functions, several delay-range- and delay-rate-dependent (or delay-rate-independent) criteria are derived in terms of linear matrix inequalities. Finally, an example is carried out to verify the effectiveness of the proposed method and also to show the advantages of the established stability criteria through the comparison with some literature

    Infrared carpet cloak designed with uniform silicon grating structure

    Full text link
    Through a particularly chosen coordinate transformation, we propose an optical carpet cloak that only requires homogeneous anisotropic dielectric material. The proposed cloak could be easily imitated and realized by alternative layers of isotropic dielectrics. To demonstrate the cloaking performance, we have designed a two-dimensional version that a uniform silicon grating structure fabricated on a silicon-on-insulator wafer could work as an infrared carpet cloak. The cloak has been validated through full wave electromagnetic simulations, and the non-resonance feature also enables a broadband cloaking for wavelengths ranging from 1372 to 2000 nm.Comment: 11 pages, 4 figure

    One-dimensional phosphorus chain and two-dimensional blue phosphorene grown on Au(111) by molecular-beam epitaxy

    Get PDF
    Single layer (SL) phosphorus (phosphorene) has drawn considerable research attention recently as a two-dimensional (2D) material for application promises. It is a semiconductor showing superior transport and optical properties. Few-layer or SL black phosphorus has been successfully isolated by exfoliation from bulk crystals and extensively studied thereof for its electronic and optical properties. Blue phosphorus (blueP), an allotrope of black phosphorus where atoms are arranged in a more flat atomic configuration, has been recently suggested by theory to exist in the SL form on some substrates. In this work, we report the formation of a blueP-like epilayer on Au(111) by molecular-beam epitaxy. In particular, we uncover by scanning tunneling microscopy (STM) one-dimensional (1D) atomic chains at low coverage, which develop into more compact islands or patches of (3×3)R30(\sqrt{3}\times\sqrt{3})R30^\circ structure with increasing coverage before blueP-like islands nucleate and grow. We also note an interesting growth characteristic where the (3×3)R30(\sqrt{3}\times\sqrt{3})R30^\circ surface at intermediate coverage tends to phase-separate into locally low-coverage 1D chain and high-coverage blueP-like structures, respectively. This experiment thus not only lends a support of the recently proposed half-layer by half-layer (HLBHL) growth mechanism but also reveals the kinetic details of blueP growth processes

    MOQPSO-D/S for Air and Missile Defense WTA Problem under Uncertainty

    Get PDF
    Aiming at the shortcomings of single objective optimization for solving weapon target assignment (WTA) and the existing multiobjective optimization based WTA method having problems being applied in air and missile defense combat under uncertainty, a fuzzy multiobjective programming based WTA method was proposed to enhance the adaptability of WTA decision to the changes of battlefield situation. Firstly, a multiobjective quantum-behaved particle swarm optimization with double/single-well (MOQPSO-D/S) algorithm was proposed by adopting the double/single-well based position update method, the hybrid random mutation method, and the two-stage based guider particles selection method. Secondly, a fuzzy multiobjective programming WTA model was constructed with consideration of air and missile defense combat’s characteristics. And, the uncertain WTA model was equivalently clarified based on the necessity degree principle of uncertainty theory. Thirdly, with particles encoding and illegal particles adjusting, the MOQPSO-D/S algorithm was adopted to solve the fuzzy multiobjective programming based WTA model. Finally, example simulation was conducted, and the result shows that the WTA model constructed is rational and MOQPSO-D/S algorithm is efficient
    corecore